Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Li-Qin Jiang^a* and Feng-Xia Sun^b

^aCollege of Pharmaceuticals & Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail: sunfengxia_1999@sohu.com

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ Disorder in main residue R factor = 0.052 wR factor = 0.146 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Benzotriazol-1-yl 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

The title compound, $C_{22}H_{19}N_5O_6$, is an important intermediate in the synthesis of nefidipine-type pharmaceuticals. The dihydropyridine ring has a flattened boat conformation. Molecules are linked by $N-H\cdots N$ hydrogen bonds. Received 7 February 2006 Accepted 17 February 2006.

Comment

4-Aryl-1,4-dihydropyridine-3,5-dicarboxylic diesters of the nefidipine type have become almost indispensable for the treatment of cardiovascular diseases since they first appeared on the market in 1975 (Yiu & Knaus, 1999; Goldmann & Stoltefuss, 1991). The title compound is a key intermediate for their preparation. Fig.1 shows its molecular structure. The dihydropyridine ring has a flattened boat conformation. This compares well with the structure of 3-benzotriazol-1-yl-5-*tert*-butyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate and nefidipine (Liu *et al.*, 2006; Hofmann & Cimiraglia, 1990; Ramusino & Varì, 1999). The nitro group is found to be disordered.

Intermolecular hydrogen bonds link the molecules in a chain (Table 1 and Fig. 2); the acceptor is a triazole N atom.

Experimental

2,6-Dimethyl-4-(*m*-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid monomethyl ester (332 mg, 1 mmol) was dissolved in 25 ml CH₂Cl₂, and a solution of dicyclohexylcarbodiimide (206 mg, 1 mmol) and benzotriazol-1-ol (135 mg, 1 mmol) in 10 ml CH₂Cl₂ was added dropwise at 278 K. The reaction mixture was stirred at 276– 279 K for 8 h. The solvent was removed by vacuum evaporation at 293 K. The product was purified by chromatography on a silica gel column (eluted with ethyl acetate and petroleum ether, 1:5) at room temperature (yield 450 mg). Crystals were obtained by slow evaporation of the solution.

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $C_{22}H_{19}N_5O_6$ $M_r = 449.42$ Monoclinic, P_{21}/c a = 8.113 (3) Å b = 17.934 (5) Å c = 14.723 (4) Å $\beta = 98.008$ (6)° V = 2121.2 (11) Å³ Z = 4

Data collection

Bruker SMART CCD area detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.973, T_{\max} = 0.979$ 11847 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.146$ S = 1.004343 reflections 324 parameters H atoms treated by a mixture of independent and constrained refinement

lable l			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot$
$N4-H4A\cdots N1^{i}$	0.83 (2)	2.28 (3)	3.079 (3)	163 (2)
6	1	. 1		

 $D_x = 1.407 \text{ Mg m}^{-3}$

Cell parameters from 2365

Mo $K\alpha$ radiation

reflections

 $\theta = 2.5 - 22.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int}=0.046$

 $\theta_{\rm max} = 26.5^\circ$

 $h = -9 \rightarrow 10$

 $k = -20 \rightarrow 22$

 $l = -14 \rightarrow 18$

Block, colourless

 $0.26 \times 0.22 \times 0.20 \ \text{mm}$

4343 independent reflections

 $w = 1/[\sigma^2(F_{\rm o}{}^2) + (0.063P)^2$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.4855P]

 $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

2397 reflections with $I > 2\sigma(I)$

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

The H atom bonded to N4 was located in a difference map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The nitro group is disordered; each O atom was refined on two alternative sites with equal occupancy, and restraints were applied for geometrical similarity, planarity, and approximately isotropic displacement parameters.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge support from Tianjin University and Hebei University of Science and Technology.

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559– 1578.

Figure 1

·A

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

A packing diagram of (I). Dashed lines indicate hydrogen bonds.

Hofmann, H. J. & Cimiraglia, R. (1990). J. Mol. Struct. (Theochem.), 205, 1–6.
Liu, B.-S., Sun, F.-X. & Zhou, L.-N. (2006). Acta Cryst. E62, 072–073.
Ramusino, M. C. & Varì, M. R. (1999). J. Mol. Struct. (Theochem.), 492, 257–268.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yiu, S. H. & Knaus, E. E. (1999). Drug Development Research, 48, 26-37.